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5.3 SO(4): Self-Dual and Anti-Self-Dual Tensor Representations 

Before we can discuss the self-dual and anti-self-dual tensor representations, we need to introduce the 

Hodge dual (a.k.a. Hodge star operation). Despite the name, the Hodge dual is not related to dual 

vectors (= covectors). The Hodge dual can only be taken of a totally antisymmetric tensor and results 

again in a totally antisymmetric tensor. Specifically, for a 4-dimensional Euclidean space the Hodge dual 

of the antisymmetric rank-2 tensor ��� is defined to be the antisymmetric rank-2 tensor ���� = �		��������, 
where a summation over the repeated indices � and 
 is implied [GTNut, Ch. IV.1, p. 197]. 

The 4-dimensional (rank-4) Levi-Civita symbol �����  is defined to be +1 if its indices are an even 

permutation of 1234, −1 if its indices are an odd permutation of 1234, and 0 in all other cases. Thus, the 

nonzero elements of �����  (sorted by the first two indices) are: ����� = 1 ����� = 1 ����� = −1 ����� = −1 ����� = 1 ����� = 1 ����� = −1 ����� = −1 ����� = 1 ����� = 1 ����� = −1 ����� = −1 ����� = 1 ����� = 1 ����� = −1 ����� = −1 ����� = 1 ����� = 1 ����� = −1 ����� = −1 ����� = 1 ����� = 1 ����� = −1 ����� = −1 

 

Evaluating ���� = �		�������� for the general antisymmetric 4×4 matrix shown on the left side, we find the 

dual matrix shown to the right side: 

� = � 0 � � �−� 0 � �−� −� 0 �−� −� −� 0� 		→ 		 �� = �
0 � −� �−� 0 � −�� −� 0 �−� � −� 0 �. 

 �!�, orthogonal ("# = "$�), determinant=1
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" = 1 0 0 00 1 0 00 0 cos %& −sin %&0 0 sin%& 	cos%& ⋯ 	cos*( 0 −sin*( 00 1 0 0sin*( 0 cos*( 00 0 0 1
	cos*) 0 0 −sin*)0 1 0 00 0 1 0sin*) 0 0 cos*)

3& = 0 0 0 00 0 0 00 0 0 −10 0 1 0 ,⋯	,	4(= 0 0 −1 00 0 0 01 0 0 00 0 0 0 ,	4)= 0 0 0 −10 0 0 00 0 0 01 0 0 0

 �!�, orthogonal ("# = "$�), determinant=1

" = 1 0 0 00 1 0 00 0 cos %& −sin %&0 0 sin %& 	cos%& ⋯ 	cos*( 0 −sin*( 00 1 0 0sin*( 0 cos*( 00 0 0 1
	cos*) 0 0 −sin*)0 1 0 00 0 1 0sin*) 0 0 cos*)

0 F G H−F 0 −H G−G H 0 −F−H −G F 0

 �!�, antisymmetric (2# = −2)

3& = 0 0 0 00 0 0 00 0 0 −10 0 1 0 ,⋯	 ,	4(= 0 0 −1 00 0 0 01 0 0 00 0 0 0 , 	4)= 0 0 0 −10 0 0 00 0 0 01 0 0 03� , 3� = ����3�,	 4� , 4� = ����3�,		 3�, 4� = ����4�
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The dual matrix is again antisymmetric, as expected, but its components got moved around. If we apply 

the Hodge dual operation for a second time, we get back to the original matrix. In that sense, taking the 

Hodge dual is analogous to taking the transpose. (For a broader discussion of the Hodge dual, see the 

Appendix “The Hodge Dual in Euclidean Space”.) 

Now, if a matrix remains unchanged when taking the Hodge dual, it is called self-dual and if a matrix 

changes its sign when taking the Hodge dual, it is called anti-self-dual. This is completely analogous to 

what we said in the previous example about taking the transpose and the definition of symmetric and 

antisymmetric matrices. Given any antisymmetric matrix �, we can decompose it into the self-dual 

matrix �I = �		(� + ��) and the anti-self-dual matrix �$ = �		(� − ��) such that � = �I + �$. Using the 

component names from before, we find 

�I = 12�
0 � + � � − � � + �−� − � 0 � + � � − �−� + � −� − � 0 � + �−� − � −� + � −� − � 0 � ,					�$ = 12�

0 � − � � + � � − �−� + � 0 � − � � + �−� − � −� + � 0 � − �−� + � −� − � −� + � 0 �. 
Note that each of those matrices has only three independent parameters, shown in red, green, and blue: 

�I = � 0 F G H−F 0 H −G−G −H 0 F−H G −F 0 � ,					�
$ = � 0 F0 G0 H0−F0 0 −H0 G0−G0 H0 0 −F0−H0 −G0 F0 0 �. 

In fact, the self-dual matrix �I can be expressed in the 3D basis 3& + 4&, 3( + 4(, and 3) + 4)  and the 

anti-self-dual matrix �$ can be expressed in the 3D basis 3& −4&, 3( − 4(, and 3) − 4). 

The diagram shows the self-dual and anti-self-dual representations of SO(4). In the upper branch, the 4D 

rotations act on self-dual matrices, which can be expressed in the 3D basis 3� + 4�, and in the lower 

branch, the same rotations act on anti-self-dual matrices, which can be expressed in the 3D basis 3� −4�. The 4D rotations always map self-dual matrices to self-dual ones and anti-self-dual matrices to anti-

self-dual ones, never mixing the two together [GTNut, IV.1, p. 197]. 

Let’s try this out by acting with the generator 3& on the general self-dual matrix �I. (The calculation is 

easier with a generator than a rotation matrix.) In other words, we calculate [3& , �I]: 
�0 0 0 00 0 0 00 0 0 −10 0 1 0 � ∙ �

0 F G H−F 0 H −G−G −H 0 F−H G −F 0 � − �
0 F G H−F 0 H −G−G −H 0 F−H G −F 0 � ∙ �

0 0 0 00 0 0 00 0 0 −10 0 1 0 � = � 0 0 −H G0 0 G HH −G 0 0−G −H 0 0�. 
Indeed, the result is again a self-dual matrix, albeit one that is less general than the one we started with. 

Note that the three independent parameters (F, G, H) in the original self-dual matrix get mapped to (0, −H, G), a fact that we will return to in the next example. We can do the same calculation with the 

remaining five basis generators and find that the result is always a self-dual matrix. Finally, we can let all 

the basis generators act on a general anti-self-dual matrix and find that the result is always an anti-self-

dual matrix.  


