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5. Rotation in Four Dimensions and Relativistic Space-Time 

5.1 SO(4): The Group of Rotations in 4-Dimensional Euclidean Space 

 
We now turn to rotation in 4-dimensional Euclidean space. This is a good warm-up exercise to get ready 

for the Lorentz transformation, which is at the core of the theory of relativity. Once we understand 4D 

Euclidean space, it’s just a hop and a skip (actually, a flip of sign) to Minkowski space-time! 

The crucial thing to understand about spaces with other-than-three dimensions is that rotations are 

defined by 2D planes, not by axes. In 2D space there is only one possible plane and we rotate about a 

point in this plane. In 3D space there are three possible orthogonal planes and we rotate about an axis, 

which singles out a particular (orthogonal) plane. In 4D space there are six possible orthogonal planes 

and we rotate about a plane, which singles out another (orthogonal) plane! Therefore, we need six 

rotation angles to describe a rotation in 4D space. In the following, we write vectors in 4D Euclidean 

space as � = (��, ��, ��, ��)
 = (�, �, �, )
 without an arrow on top of � (trusting that � as a vector 

and � as a component can be distinguished from context). The six orthogonal planes can then be 

identified as �, �, ��, ��, ��, and �. (The reason for numbering the components from 0 to 3 

instead of from 1 to 4 is that it will make the transition from 4D space to space-time smoother.) 

The rotations in the �, �, and �� planes correspond directly to those that we already discussed for 

SO(3). For the associated rotation angles, we reuse the symbols ��, ��, and ��. For the three new 

rotations in the ��, ��, and � planes, we introduce the angles ��, ��, and ��, respectively. A general 

4D rotation can be written as the matrix product �(��, �� , ��, �� , �� , ��) = ���(��) ∙ ���(��) ∙���(��) ∙ ���(��) ∙ ���(��) ∙ ���(��), where 

��� = �1 0 0 00 1 0 00 0 cos �� − sin ��0 0 sin �� cos ��
� , 	��� = �1 0 0 00 cos �� 0 sin ��0 0 1 00 − sin �� 0 cos ��

� , 	��� = �1 0 0 00 cos �� − sin �� 00 sin �� cos �� 00 0 0 1�, 

!"#", orthogonal (�
 = �$�), determinant=1

6 parameters: ��, ��, ��, �� , ��, ��Lie Group SO(4)

Topology:�%� # &�

!"�' = ��

6 parameters: ��, ��, ��, �� , ��, ��

⊂ !"#")' = �)�$�

!"#", antisymmetric (*
 = −*)

+, , +- = .,-/+/ ,	 0, , 0- = .,-/+/,		 +, , 0- = .,-/0/
Lie Algebra so(4)

defining

representation

adjoint

representation

defining

representation

adjoint

representation

!"�' = *�
linearize

at 1

1
exponential

map

+ = 2�2�345�� = 16

)' = 7*, )8

�
�
�′

�
)
)′

*

*
�
�′

6-dimensional

linear space

with 7·,·8

��������
� = 1 0 0 00 1 0 00 0 cos �� − sin ��0 0 sin �� 	cos ��

⋯ 	cos �� 0 − sin �� 00 1 0 0sin �� 0 cos �� 00 0 0 1
	cos �� 0 0 − sin ��0 1 0 00 0 1 0sin �� 0 0 cos ��

+� = 0 0 0 00 0 0 00 0 0 −10 0 1 0 , ⋯	,	0� = 0 0 −1 00 0 0 01 0 0 00 0 0 0 ,	0� = 0 0 0 −10 0 0 00 0 0 01 0 0 0
��������

!"#", orthogonal (�
 = �$�), determinant=1

� = 1 0 0 00 1 0 00 0 cos �� − sin ��0 0 sin �� 	cos ��
⋯ 	cos �� 0 − sin �� 00 1 0 0sin �� 0 cos �� 00 0 0 1

	cos �� 0 0 − sin ��0 1 0 00 0 1 0sin �� 0 0 cos �� +�, +� , +�, 0� , 0� , 0�Basis:

0 < = >−< 0 ? 1−= −? 0 @−> −1 −@ 0

!"#", antisymmetric (*
 = −*)

+� = 0 0 0 00 0 0 00 0 0 −10 0 1 0 , ⋯	 ,	0� = 0 0 −1 00 0 0 01 0 0 00 0 0 0 , 	0� = 0 0 0 −10 0 0 00 0 0 01 0 0 0+, , +- = .,-/+/,	 0, , 0- = .,-/+/,		 +,, 0- = .,-/0/

⊂ !"#")
)′

0 < = >−< 0 ? 1−= −? 0 @−> −1 −@ 0+� , +� , +� , 0�, 0� , 0�Basis:



E. Sackinger: Groups in Physics (Draft Version 0.2, November 19, 2022)  

 

88 

 

��� = �cos �� − sin �� 0 0sin �� cos �� 0 00 0 1 00 0 0 1� , 	��� = �cos �� 0 − sin �� 00 1 0 0sin �� 0 cos �� 00 0 0 1� , 	��� = �cos �� 0 0 − sin ��0 1 0 00 0 1 0sin �� 0 0 cos ��
�. 

The six basis generators are obtained, as usual, by taking the derivatives with respect to the six 

parameters and evaluating the result at �, = �, = 0. For the first three basis generators, we reuse the 

symbols +�, +�, and +� from SO(3), although they are now 4×4 instead of 3×3 matrices, and for the three 

new ones, we use the symbols 0�, 0�, and 0�: 

+� = �0 0 0 00 0 0 00 0 0 −10 0 1 0 � , 	+� = �0 0 0 00 0 0 10 0 0 00 −1 0 0� , 	+� = �0 0 0 00 0 −1 00 1 0 00 0 0 0�, 
0� = �0 −1 0 01 0 0 00 0 0 00 0 0 0� , 	0� = �0 0 −1 00 0 0 01 0 0 00 0 0 0� , 	0� = �0 0 0 −10 0 0 00 0 0 01 0 0 0 �. 

A general element, *, of the so(4) Lie algebra is an antisymmetric 4×4 matrix. Such a matrix has six 

independent parameters, confirming the six degrees of freedom provided by the six rotation angles. 

The commutation relations among +�, +�, and +� are the same ones that we already discussed for SO(3), 

namely 7+� , +�8 = +�, 7+� , +�8 = +�, and 7+�, +�8 = +�, or, written more compactly, 7+,, +-8 = .,-/+/, 

where a summation over the repeated index B is implied. How do the	0s commute with each other and 

with the +s? It turns out that 70, , 0-8 = .,-/+/ and 7+,, 0-8 = .,-/0/ (see the upper branch of the 

diagram) [GTNut, Ch. I.3, Appendix 2]. Interestingly, the +s and 0s behave in a similar, but not perfectly 

identical way! We’ll come back to this later. 

So far, we discussed the defining, 4-dimensional representation of SO(4), which is shown in the upper 

branch of the diagram. It is easy to obtain a 6-dimensional representation of SO(4) by constructing the 

adjoint representation, which is shown in the lower branch. As usual, the adjoint representation acts on 

the Lie algebra (red arrows). We can think of the adjoint representation as acting on antisymmetric 4×4 

matrices by conjugation, )′ = �)�$�, or we can think of it as acting on 6-component column vectors 

(the “unpacked” antisymmetric matrices) by regular matrix-vector multiplication. The diagram illustrates 

the former case. We have examined these two views of the adjoint representation previously when 

discussing SU(2). 

Similarly, we can think of the adjoint representation of the so(4) algebra as acting on antisymmetric 4×4 

matrices by commutation, )′ = 7*, )8, or we can think of it as acting on 6-component column vectors by 

regular matrix-vector multiplication. Again, the diagram illustrates the former case. 

 

  


