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9.6 The Exterior Product; Area and Volume Elements 

 

The exterior product (a.k.a. wedge product or Grassmann product), symbolized by a wedge ∧,  

generalizes the cross product and triple product in two important ways: (i) The exterior product can be 

taken not only of 3-dimensional vectors, but of vectors in any number of dimensions; (ii) The exterior 

product can be taken not only of vectors, but of (totally antisymmetric) tensors of any rank. The basic 

idea is to take the tensor product and follow it by antisymmetrization. We will illustrate this idea with 

three concrete examples and then discuss the product’s geometrical significance. 

Two 3D Vectors. The exterior product of two 3D vectors ��  and ��, where �, � = 1, 2, 3, is written as �� ∧
�� and evaluates to the tensor ���� − ����. The expression ���� is the tensor product (= outer product) 

of the two vectors, which is then antisymmetrized by subtracting the transposed tensor ����. (Caution: 

some authors include a factor ½ as part of the antisymmetrization (e.g., [RtR, Ch. 11.6]), but we won’t 

do that here.) As shown in the diagram (top row), the resulting tensor has only three independent 

components (marked in red) and they correspond to the components of the cross product! 

What happens if we take this product the other way round? Evaluating �� ∧ �� = ���� − ����, we find 

the negative of what we had before. Thus, the exterior product of two vectors anticommutes: �� ∧ �� =
−	�� ∧ ��. This is not surprising given that we antisymmetrized the result (and it is also consistent with 

the fact that the cross product anticommutes: �� × ��� = −	��� × ��). 

Three 3D Vectors. Next, let’s take the exterior product of three 3D vectors ��, ��, and ��, where �, �, � =
1, 2, 3. Again, we first take the tensor product ������ and then antisymmetrize. But now there are two 

complications: (i) The product ������ is a rank-3 tensor, a kind of 3×3×3 cubic number scheme, which is 

hard to write down. In the diagram, we represent it as a column of matrices, where � is the row index of 

the outer column vector, and � and � are the row and column indices of the inner matrices, respectively. 

(ii) The antisymmetrization now involves six terms, �� ∧ �� ∧ �� = ������ + ������ + ������ − ������ −
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������ − ������, because three indices can be permutated in six different ways: 3! = 6. We add the 

three even permutations and subtract the three odd permutations. (Again, we are not including a 

possible factor 1/6 as part of the antisymmetrization.) As shown in the diagram (center row), the 

resulting tensor has only one independent component (marked in red) and it corresponds to the (scalar) 

triple product! 

3D Vector and Antisymmetric 3D Tensor. We can also take the exterior product of a vector ��  and a 

tensor ���, provided the latter is antisymmetric (��� = −���). The antisymmetry of ��� implies that it has 

only three independent components. Again, we first take the tensor product ����� and then 

antisymmetrize: �� ∧ ��� = ����� + ����� + ����� − ����� − ����� − �����. Making use of the 

antisymmetry of ���, this simplifies to �� ∧ ��� = 2(����� + ����� + �����). As shown in the diagram 

(bottom row), the resulting tensor has only one independent component and it corresponds to (twice) 

the dot product of ��  and the three independent components of ���, which are written as � ! 

What happens if we take this product the other way round? Will it anticommute? No! Evaluating ��� ∧
�� = ����� + ����� + ����� − ����� − ����� − �����, we find the same result as before. So, the exterior 

product of a vector and an antisymmetric rank-2 tensor commutes: �� ∧ ��� = ��� ∧ �� (which is also 

consistent with the fact that the dot product commutes �� ∙ ��� = ��� ∙ ��). In general, if the ranks (= number 

of indices) of both factors are odd, the exterior product anticommutes, but if one or both ranks are 

even, the product commutes [RtR, Ch. 11.6]. 

Geometrical Significance. What’s so special about the exterior product? The exterior product of two 3D 

vectors represents the area of the parallelogram enclosed by the two vectors along with its orientation 

in the ambient 3D space. This coincides with the geometrical interpretation of the cross product. The 

exterior product of three 3D vectors represents the (oriented) volume of the parallelepiped enclosed by 

the three vectors. This coincides with the geometrical interpretation of the triple product. In general, 

the exterior product of " vectors results in a so-called p-blade (or simple p-vector), which represents the 

oriented "-dimensional volume (or area, if " = 2) enclosed by these vectors! We refer to these 

geometrical objects as area and volume elements. 

Why does this geometrical interpretation make sense? The exterior product of two vectors has two 

major properties: (i) it is linear in each factor, for example, (#��) ∧ ��� = �� ∧ $#���% = #(�� ∧ ���) and (ii) it 

anticommutes, �� ∧ ��� = −��� ∧ ��, and hence �� ∧ &�� = 0, where # and & are scalars. These properties 

essentially define (or axiomatize) what we mean by an area element! If we have a parallelogram defined 

by the vectors �� and ��� and (i) we scale up either side �� or ��� by a factor #, the enclosed area must go up 

by the same factor # and (ii) if both sides are parallel, ��� = &��, the enclosed area must be zero! 

Interestingly, we can talk about areas and volumes enclosed by vectors without first defining what the 

length of a vector is! (To define the length � of a vector ��, we need a symmetric rank-2 tensor '��, 

known as the metric tensor: �� = ∑ '�������� .) 

  


