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9.8 The Exterior Derivative in 3D Euclidean Space; Gradient, Curl, and Divergence 

The exterior derivative and the Hodge dual are the tools that permit us to unify and generalize the 

gradient, curl, and divergence operators. In particular, they generalize the curl operator from three to 

any number of dimensions. We start by discussing these ideas for the familiar 3D Euclidean space rather 

than a general smooth manifold, thus postponing the abstract concept of a differential form until later. 

The exterior product (a.k.a. wedge product) of two vectors is given by the tensor product (= outer 

product) followed by antisymmetrization, ��� ∧ �� ≔ ������ − ������, where ��� and �� are column vectors. See 

the Appendix “The Exterior Product; Area and Volume Elements” for more details. Spelled out for two 3-

dimensional vectors in term of their components, we have 
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The exterior product exists for vectors in any number of dimensions. Moreover, we can take the  

exterior product of (totally antisymmetric) tensors of any two ranks. Together with the Hodge dual, we 

can re-express (and generalize) the cross product and the dot product. See the Appendix “The Hodge 

Dual in Euclidean Space” for more details. Using the ⋆ symbol for the Hodge dual, we can write ��� × �� =	⋆ ���� ∧ ��� and ��� ⋅ �� = �� ⋆ �⋆ ��� ∧ ��� = �� ⋆ ���� ∧	⋆ ���, where ��� and �� are 3-dimensional vectors. 

Now, the exterior derivative of a vector field is given by ∇��� ∧ ������, where the first vector is the 

differential operator ∇���	= ��/��
, �/���,⋯ , �/���	��. In other words, we take the derivative ∇������ and 

antisymmetrize the result: ∇������ − �∇��������. Spelled out for a 3-dimensional vector field, we have 

 �/��
�/����/���! ��
 �� ��� − " �/��
�/����/���! ��
 �� ���#
�
=  0 ���/��
 − ��
/��� ���/��
 − ��
/�����
/��� − ���/��
 0 ���/��� − ���/�����
/��� − ���/��
 ���/��� − ���/��� 0 !. 

Scalar Field$����

Vector Field������

Antisymmetric

Tensor Field%����

Totally Antisymmetric

Rank-3 Tensor Field&����

'��

%

��

$

��

%

&

$

' = ∇ × ��= curl ��

% = ∇ ∧ �� ' =	⋆ %

�� = ∇ ∧ $
= grad$ $ = ∇ ⋅ ��

= div ��

$ =	⋆
&

2

& = ∇ ∧ %

% =	⋆ ��

$

��

% = 0

% = ∇ ∧ ��

�� = ∇ ∧ $

��

%

% = ∇ ∧ ��

& = 0

& = ∇ ∧ %



E. Sackinger: Groups in Physics (Draft Version 0.2, November 19, 2022)  

 

196 

 

The exterior derivative exists for vector fields in any number of dimensions. Moreover, we can take the 

exterior derivative of a (totally antisymmetric) tensor field of any rank. The exterior derivative of a scalar 

(rank-0 tensor) field yields a vector field, that of a vector (rank-1 tensor) field yields an antisymmetric 

tensor field, and that of an antisymmetric (rank-2) tensor field yields a totally antisymmetric rank-3 

tensor field (see the red up arrows in the diagram). 

The diagram illustrates how the exterior derivative (red arrows) can be related to the gradient, curl, and 

divergence operators (black arrows) by using the Hodge dual (blue arrows): grad $ = ∇���$ = ∇��� ∧ $, 

curl �� = ∇��� × �� =	⋆ (∇��� ∧ ��), and div �� = ∇��� ∙ �� = �
�
⋆ (∇��� ∧	⋆ ��), where �� is a 3-dimensional vector field. 

Taking the exterior derivative twice of any field always yields zero. This is a consequence of the fact that 

partial derivatives commute [GFKG, Ch. I.4]. In particular, we have ∇��� ∧ ∇��� ∧ $(��) = 0 and ∇��� ∧ ∇��� ∧ ��(��) =
0, as illustrated on the right-hand side of the diagram. Rewritten in terms of the familiar differential 

operators, we get the well-known identities curl(grad $(��)) = 0�� and div(curl ��(��)) = 0. 

The above calculations can be generalized from Euclidean 3D space to a smooth manifold with any 

number of dimensions and no need for a metric (= method for measuring distances). This generalization 

is known as exterior calculus and deals with differential forms, or 3-forms for short, which we can think 

of as totally antisymmetric, totally covariant, rank-3 tensor fields on the manifold. For example, a 0-form 

is a scalar field, a 1-form is a covector field, etc. Note that given the metric-free setup, we are not 

allowed to identify covectors with vectors and we cannot take the Hodge dual. The exterior derivative of 

the 3-form 4 yields a (3 + 1)-form, which is written as 74. This appears to be a poor choice of notation 

because 74 already means “a little bit of 4”, but mathematicians assure us that this clash of notations is 

intentional [RtR, Ch. 10.3]! In the 3D Euclidean case, taking the exterior derivative of the scalar field 

�(��), where �� = (�, 8, 9)�, yields ∇��� ∧ � = (1,0,0)�, that is, “one unit of �”. In the generalized case, the 

same calculation yields 7�, that is, “a little bit of �”. How can these two results correspond to each 

other? Well, in the absence of a metric, we cannot measure lengths and thus “one unit” and “a little bit” 

are the same thing! (Does this make sense?) 

Why is this derivative called exterior? It turns out that if we integrate the exterior derivative of an (: −
1)-form, 4, on an :-dimensional (compact and orientable) manifold, ;, with boundary, �;, we get the 

same result as if we integrate the original (: − 1)-form over the exterior (= boundary) of that manifold. 

This is the fundamental theorem of exterior calculus (a.k.a. generalized Stokes theorem): < 74
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[GFKG, Ch. I.6; RtR, Ch. 12.6]. Special cases of this theorem are (i) the fundamental theorem of calculus: 
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What happens if we integrate the exterior derivative of the exterior derivative of an (: − 2)-form, 

774 = 7�4, over an :-manifold? We get the same result as if we integrate the original (: − 2)-form 

over the boundary of the boundary of that manifold, ��;. But the boundary of the boundary of a 

smooth manifold is always the empty set, hence 7�4 = 0! This is a key result of exterior calculus that 

holds for any manifold, regardless of the metric that may or may not be defined on it.  


