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9.9 From Rotation to Lorentz Transformation; Complexification 

To find the irreducible representations of the Lorentz group, O(1,3), we take advantage of the 

relationship between the Lorentz group and the group of rotations in three dimensions, O(3), the 

irreducible representations of which we already know. As a stepping stone, we make use of the group of 

rotations in four dimensions, O(4), which acts on 4-component vectors like O(1,3) but is compact like 

O(3). 

To relate the above groups, we need to jump through three hoops: 

1. We ignore unconnected components of the groups, retaining only the component that contains 

the identity element (first to second row in the diagram). 

2. We ignore the global structure of the groups, focusing on the Lie algebra instead (second to 

third row in the diagram). Taking the exponential map of the algebra yields the covering group. 

3. Finally, we ignore differences in the metric signature by complexifying (analytically continuing) 

the Lie algebra (third to fourth row in the diagram). We can recover a desired signature by 

taking the appropriate real form. 

3D Rotation (left-hand side of the diagram). The orthogonal group O(3) has two components, one with 

the proper (non-reflected) and one with the improper (reflected) rotations. Retaining only the one with 

proper rotations takes us to SO(3). The associated Lie algebra is so(3). Exponentiating this Lie algebra 

yields the group SU(2), which double covers SO(3). The associated Lie algebra, su(2), is isomorphic to 

so(3). To complexify (the defining representation of) so(3), we augment the three real basis generators 

��, ��, �� with the three imaginary basis generators �� = ���, �� = ���, �� = ���, making the algebra 

six (real) dimensional. Whereas the original algebra consisted of the real antisymmetric 3×3 matrices, 

the complexified algebra consists of the complex antisymmetric 3×3 matrices. Similarly, to complexify 

su(2), we augment the three anti-Hermitian basis generators ��, ��, �� with the three Hermitian basis 
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generators �� = ���, �� = ���, �� = ���. Whereas the original algebra consisted of the traceless anti-

Hermitian 2×2 matrices, the complexified algebra consists of all traceless complex 2×2 matrices, hence 

su(2)� = sl(2, �). What are the commutation relations of these complexified algebras? We still have 

[��, ��] = ������ from the original algebra, but then we also have [�� , ��] = [��� , ���] = −������ and 

[��, ��] = [��, ���] = ������� = ������  (as well as [�� , ��] = ������). Amazingly, these are exactly the 

commutation relations of the Lorentz algebra, so(1,3). In other words, complexifying 3D rotations gives 

us the special theory of relativity: so(3)� = so(1,3)! (We are allowed to complexify the algebras as 

described above because so(3) ∩ �so(3) = su(2) ∩ �su(2) = ∅ [QTGR, Ch. 5.5].) 

4D Rotation (center of the diagram). The orthogonal group O(4) also has two components. Retaining 

only the one with the identity element in it takes us to SO(4). The associated Lie algebra is so(4). 

Exponentiating this Lie algebra yields the group Spin(4), which double covers SO(4). Interestingly, the 

so(4) algebra breaks up into the direct sum of two so(3) algebras, so(4) = so(3) ⨁ so(3), or, equivalently, 

so(4) = su(2) ⨁ su(2), revealing a relationship between 4D and 3D rotation. This can be shown by 

replacing the (plane-rotation) basis generators �� and ��  of so(4) with the new basis generators ��
� =
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�] = ������
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������
#, and [��

�, ��
#] = 0. Similarly, the Spin(4) group breaks up into the direct product of two SU(2) 

groups, Spin(4) = SU(2) × SU(2). Since the irreducible representations of SU(2) can be labeled with spin 

values % = 0, ½, 1, etc., we conclude that the irreducible representations of Spin(4) can be labeled with 

pairs of spin values (%&, %'). The complexified so(4) algebra breaks up into the direct sum of two 

complexified so(3) algebras: so(4)ℂ = so(3)ℂ	⨁	so(3)ℂ. 

Lorentz Transformation (right-hand side of the diagram). The Lorentz group, O(1,3), has four 

components, corresponding to the proper/improper rotations and the normal/reversed time directions. 

Retaining only the component with the identity element in it takes us to the proper orthochronous 

Lorentz group, SO+(1,3). The associated Lie algebra is so(1,3). Exponentiating this Lie algebra yields the 

group Spin+(1,3), which is isomorphic to SL(2,ℂ) and double covers SO+(1,3). Whereas the so(1,3) algebra 

does not break up into two subalgebras, its complexification does: so(1,3)ℂ = so(3)ℂ	⨁	so(3)ℂ, or, 

equivalently, sl(2, ℂ)ℂ = su(2)ℂ	⨁	su(2)ℂ. This can be shown by replacing the (rotation/boost) basis 

generators )� and *� with the new basis generators +�
� =  

!
	()� + �*�) and +�

# =  

!
	()� − �*�), which have 

the commutation relations [+�
�, +�

�] = �����+�
�, [+�

#, +�
#] = �����+�

#, and [+�
�, +�

#] = 0 [PfS, Ch. 3.7.3]. 

Note that we combined the old basis generators with complex coefficients, an operation that is allowed 

only after carrying out the complexification. It turns out that the finite-dimensional irreducible 

representations of Spin+(1,3) are in a one-to-one correspondence with those of Spin(4) [Wikipedia: 

Representation theory of the Lorentz group; the unitarian trick]. Thus, the finite-dimensional irreducible 

representations of Spin+(1,3) can again be labeled with a pair of spin values (%&, %'). (However, Spin+(1,3) 

has additional infinite-dimensional representations that Spin(4) doesn’t have.) 

  


