9.10 The Irreducible Representations of the Lorentz Group

Representations of $\operatorname{SU}(2) \quad$ Representations of $\operatorname{Spin}(4)$ or $\operatorname{SL}(2, \mathbb{C})$
$j=0,1 \mathrm{D}$: trivial
$m=0$
$j=1 / 2,2 \mathrm{D}$: defining

$j=1,3 \mathrm{D}$: adjoint
$\left.\begin{array}{c}m=+1 \\ m=0 \\ m=-1\end{array}\right\}$

$\left.\begin{array}{r}(1,0), \text { 3D: self-dual } \\ +1 \\ 0 \\ 0\end{array}\right\}$
$(0,1 / 2), 2 \mathrm{D}:$ right-spinor
$(1 / 2,1 / 2), 4 D$: four-vector

$(1,1 / 2), 6 \mathrm{D}$

(0, 1), 3D: anti-self-dual

$$
(1 / 2,1), 6 D
$$

(1, 1), 9D: traceless-symmetric

What are the irreducible representations of the double cover of the (proper orthochronous) Lorentz group, $\operatorname{Spin}^{+}(1,3)=\operatorname{SL}(2, \mathbb{C})$? It turns out that the finite-dimensional irreducible representations of $\operatorname{SL}(2, \mathbb{C})$ are in a one-to-one correspondence with the irreducible representations of $\operatorname{Spin}(4)$, the double cover of the (proper) 4D rotation group [Wikipedia: Representation theory of the Lorentz group; the unitarian trick]. The group $\operatorname{Spin}(4)$ has the advantage over $\operatorname{SL}(2, \mathbb{C})$ that it decomposes into $\operatorname{SU}(2) \times \operatorname{SU}(2)$, which makes finding the irreducible representations much easier. But before venturing into four dimensions, let's warm up by enumerating the irreducible representations of $\operatorname{Spin}(3)=\operatorname{SU}(2)$, the double cover of the (proper) 3D rotation group.

Irreducible Representations of SU(2). Because the Lie group SU(2) is simply connected, its representations are in a one-to-one correspondence with those of its algebra, su(2), and it is sufficient to study the representations of the algebra [PfS, Ch. 3.7.3, p. 71]. The corresponding group representations can be obtained by applying the exponential map.

The Lie algebra su(2) is characterized by the commutation relations of its three basis generators T_{x}, T_{y}, and T_{z}, which are $\left[T_{i}, T_{j}\right]=\varepsilon_{i j k} T_{k}$ for a common choice of basis. This algebra is of rank one because the maximum number of mutually commuting basis generators is one [GTNut, Ch. VI.2]. By convention, we pick T_{z} as the generator for the 1-dimensional commuting subalgebra (= Cartan subalgebra). Now, representation theory asserts that the eigenvalues m of $J_{z}:=i T_{z}$ in a particular representation are in a one-to-one correspondence with the basis vectors of the representation space, that is, we can use m to label the basis vectors [PfS, Ch. 3.5, p. 54]. (The factor i in $i T_{z}$ is included to make m real.)

The ladder argument shows that the eigenvalues m are spaced apart by 1.0 and range symmetrically from $-j$ to $+j$ (see the Appendix "The Ladder Trick; Raising and Lowering Operators"). So, there is a representation of J_{z} with a single eigenvalue $m=0$, another one with two eigenvalues $m=+1 / 2$ and $-1 / 2$, yet another one with three eigenvalues $m=+1,0$ and -1 , and so on. These three cases are
illustrated on the left-hand side of the diagram. The dots correspond to the eigenvalues m and the vertical lines connecting the dots symbolize the action of the raising and lowering operators. Plots like these are known as weight diagrams: the weights (= eigenvalues) are represented by dots and the root vectors (= raising/lowering operators) correspond to the allowed dot-to-dot movements, in this case just up and down [GTNut, Ch. VI.2]. The dots in the weight diagram not only represent eigenvalues but also the basis vectors of the representation space. Thus, the first representation acts on a 1-dimensional representation space, the second one on a 2-dimensional space, the third one on a 3-dimensional space, and so on. We can label each representation by its dimension $d=1,2,3$, etc. or by its largest eigenvalue (weight) $j=0,1 / 2,1$, etc. The two schemes are equivalent and related by $d=2 j+1$.

Some representations have special names. The 1-dimensional representation is known as the trivial representation. The 2-dimensional representation is the defining representation because $S U(2)$ is defined by its action on 2-dimensional (complex) vectors. The 3-dimensional representation is the adjoint representation because the su(2) algebra is three dimensional.

Irreducible Representations of $\operatorname{Spin}(4)$ (and $\operatorname{SL}(\mathbf{2}, \mathbf{C})$). Because $\operatorname{Spin}(4)$ is simply connected, its representations are in a one-to-one correspondence with those of its algebra, so(4).

The Lie algebra so(4) is characterized by the commutation relations of its six basis generators V_{x}^{+}, V_{y}^{+}, $V_{z}^{+}, V_{x}^{-}, V_{y}^{-}$, and V_{z}^{-}, which are $\left[V_{i}^{+}, V_{j}^{+}\right]=\varepsilon_{i j k} V_{k}^{+},\left[V_{i}^{-}, V_{j}^{-}\right]=\varepsilon_{i j k} V_{k}^{-}$, and $\left[V_{i}^{+}, V_{j}^{-}\right]=0$ for a basis in which the decomposition so(4) $=\operatorname{su}(2) \oplus \operatorname{su}(2)$ is manifest. This algebra is of rank two because the maximum number of mutually commuting basis generators is two. Let's pick $i V_{z}^{+}$and $i V_{Z}^{-}$as the generators for the 2-dimensional Cartan subalgebra and let's call the eigenvalues of $i V_{z}^{+} m_{1}$ and those of $i V_{z}^{-} m_{2}$. Now, the eigenvalue pairs $\left(m_{1}, m_{2}\right)$ are in a one-to-one correspondence with the basis vectors of the representation space, that is, we can use these pairs to label the basis vectors.

Applying the ladder argument separately to $i V_{z}^{+}$and $i V_{z}^{-}$, we find that the possible values for m_{1} and m_{2} are spaced apart by 1.0 and have symmetric ranges: $-j_{1} \leq m_{1} \leq+j_{1}$ and $-j_{2} \leq m_{2} \leq+j_{2}$. Now, because the weights are pairs, $\left(m_{1}, m_{2}\right)$, the weight diagram becomes 2 -dimensional. In the above diagram, m_{1} is drawn on the vertical and m_{2} on the horizontal axis. The raising and lowering operators acting on $i V_{z}^{+}$move us to the dot above and below, whereas the raising and lowering operators acting on $i V_{Z}^{-}$move us right and left, effectively turning the ladder into a "jungle gym". Instead of two there are now four root vectors, one pointing up, one down, one left and one right. Some of the possible weight diagrams are illustrated on the right-hand side. The total number of dots in the diagram equals the dimension of the representation. Note that the dimension does not provide a unique label in this case, hence we use the largest weight, $\left(j_{1}, j_{2}\right)$, as the label.

Some representations have special names. The 1-dimensional $(0,0)$ representation is known as the trivial representation. The 2-dimensional representations $(1 / 2,0)$ and $(0,1 / 2)$ are the left-chiral and rightchiral Weyl spinor representations, respectively. The 3-dimensional representations $(1,0)$ and $(0,1)$ are the self-dual and anti-self-dual representations, respectively. The 4-dimensional ($1 / 2,1 / 2$) representation is the 4-vector representation. The 9 -dimensional $(1,1)$ representation is the traceless-symmetric tensor representation. Incidentally, the defining representation of $\operatorname{SL}(2, \mathbb{C})$ is $(1 / 2,0)$ and the adjoint representation is $(1,0) \oplus(0,1)$.

