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5.2  The Ladder Trick; Raising and Lowering Operators 

 
Let’s assume that we are given a Lie algebra and the only thing we know about it is its commutation 

relations. What can we infer from that? For so(2) and u(1) the commutation relations are trivial (there is 

only one basis generator, which commutes with itself) and there is nothing interesting we can infer from 

that. For so(3), su(2), and sp(1), however, there are three nontrivial commutation relations: [�� , ��] =��	, [�� , �	] = ���, and [�	, ��] = ���. Interestingly, from these relations alone, we can conclude that the 

eigenvalues of �	, or any other basis generator, are spaced apart by exactly 1.0! In other words, the 

eigenvalues form a ladder with a rung spacing of 1.0. 

How can we demonstrate this? We construct raising and lowering operators that when applied to a 

given eigenvector produce the eigenvector with the next higher and the eigenvector with the next lower 

eigenvalue, respectively. Let’s focus on the eigenvectors and eigenvalues of �	 (we can do the same trick 

with any of the basis generators). The two commutation relations with �	 in the commutator look very 

similar: [�	, ��] = ��� and [�	, ��] = −���. We combine them in two different ways: [�	, �� + ���] = �� +��� and [�	, �� − ���] = −�� + ���. After introducing the new names �� = �� + ��� and � = �� − ���, we 

can restate the two combined commutation relations more compactly: [�	, ��] = �� and [�	, �] = −�. 

It turns out that �� and � are exactly the raising and lowering operators we are looking for. Why? I 

don’t have a good intuitive explanation for this fact, but, as we will see, it is straightforward to 

demonstrate this mathematically. (Note that �� and � are not elements of the Lie algebra, which 

permits only real combinations of basis generators. Instead, they are elements of the complexified Lie 

algebra, which is different from so(3) = su(2) = sp(1).) 

Let’s show that �� raises the eigenvalue by 1.0 (analogously, one can show that � lowers the eigenvalue 

by 1.0). We start by assuming that we already have an eigenvector Ψ� with eigenvalue �, that is, the 

eigenequation �	Ψ� = �Ψ� is satisfied. Then, we apply the raising operator to both sides of this 

equation ���	Ψ� = ���Ψ�. Next, we swap the operators ���	 by using our combined commutation 
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relation [�	, ��] = �	�� − ���	 = ��. So, we get (�	�� − ��)Ψ� = ���Ψ�. Rearranging the terms yields �		��Ψ� = (� + 1)	��Ψ�. What is this? It is a new eigenequation that says that ��Ψ� is an eigenvector 

of �	 with eigenvalue �+ 1. Not only is this the next higher eigenvalue, but its value went up by exactly 

1.0, just what we set out to show! 

But that’s not all. We know that an �-dimensional representation consists of � × � matrices and such 

matrices have � eigenvalues. Moreover, because the map �� → −��, �� → �, � → �� is a symmetry of 

the commutation relations, the absolute value of the largest and smallest eigenvalue must be the same. 

Combining these facts with the spacing of 1.0, we can infer all the eigenvalues of all the representations: 

for the 2-dimensional representation they must be −½ and +½, for the 3-dimensional representation 

they must be −1, 0 +1, and so on. 

What is the explicit matrix form of the raising and lowering operator? Let’s try this out for the 3-

dimensional representation: �� = �
√�"

0 1 01 0 10 1 0#, �� = �
√�"
0 −� 0� 0 −�0 � 0 #, and	�	 = "1 0 00 0 00 0 −1#. 

Combining �� and �� results in �� = �� + ��� = √2"0 1 00 0 10 0 0# and � = �� − ��� = √2"0 0 01 0 00 1 0#. 

These are the raising and lowering operators for �	. 

We already know the eigenvectors and eigenvalues of �	. For example, the eigenvector with the smallest 

eigenvalue is Ψ� = "001#. Let’s apply �� to this vector repeatedly: "001# → √2"
010# → 2"

100# → "
000#. We 

get all the eigenvectors (not normalized, but still valid eigenvectors) and when we run out of 

eigenvectors, we get zero vectors. Alternatively, we can start with the eigenvector with the largest 

eigenvalue Ψ�� = "100# and apply � repeatedly: "100# → √2"
010# → 2"

001# → "
000#. Electroman strolls by 

and says: “That’s just like a shift register!”. See the diagram for examples in two, three, and four 

dimensions. 

The above example shows that �� and � do not keep the eigenvectors in their normalized form. This 

can be fixed by including the following normalization factors: ��Ψ� = $%(% + 1) − �(� + 1)Ψ��� and 

�Ψ� = $%(% + 1) − �(� − 1)Ψ��, where % is the maximum value of � [GTNut, Ch. IV.2; PfS, Ch. 

3.6.1]. In our example we have � = −1, 0, 1 and thus % = 1; the raising operations with the 

normalization factor included become ��Ψ� = √2Ψ� and ��Ψ� = √2Ψ��; similarly, the lowering 

operations become �Ψ�� = √2Ψ� and �Ψ� = √2Ψ�. Now, Ψ� remains normalized! 

It is interesting to compare the eigenvalues of the generators of U(1) and SU(2). For a &-dimensional 

representation of U(1) with & > 1, the eigenvalues must be integer multiples of a common value (for & = 1, any value is fine). The reason for this condition is that the circular topology of the group imposes 

a periodicity constraint. The (trivial) Lie algebra of U(1) has nothing to say about these eigenvalues. In 

contrast, the Lie algebra of SU(2) demands, as we have just seen, that the eigenvalues are spaced apart 

by 1.0. This follows entirely from the local structure (Lie algebra); the global structure (topology) of the 

SU(2) group was not used. 


