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5. Appendices 

 

5.1  Low-Dimensional Lie Groups and their Relationships 

Orthogonal Groups O(n). The orthogonal group O(n) consists of all the linear transformations that 

preserve the Euclidean inner product (dot product) of two real �-dimensional vectors. Topologically, the 

group O(n) consists of two disconnected components: one with the reflective and one with the non-

reflective transformations. Thus, only half of the elements can be reached in a continuous manner when 

starting from the identity element. By restricting the transformations to only those with determinant 

plus one (non-reflective elements), we are led to the subgroup SO(n). Topologically, this group consists 

of only one component, that is, the group manifold is connected. Essentially, to get from O(n) to SO(n) 

we “divided out” the cyclic group of order two ℤ� (multiplicative group with elements +1 and −1). We 

can thus write O(n) as the “product” SO(n) times ℤ� (the direct product if � is odd and the semidirect 

product if � is even; see https://math.stackexchange.com/questions/1055363/is-o2-really-not-

isomorphic-to-so2-times-1-1?rq=1). Dividing out ℤ� also has the advantage that the result is free of 

nontrivial normal subgroups, that is, SO(n) is a simple group. Although SO(n) is topologically connected it 

is still not simply connected. To be simply connected it is necessary that all closed loops in the group 

manifold can be contracted to a point in a continuous manner. Interestingly, it is possible to find a larger 

group, Spin(n), known as the covering group, which has the same Lie algebra as SO(n) and therefore is 

locally isomorphic to SO(n), that is simply connected (for � > 2). (Note that the covering group of a 

simple group is not necessarily simple anymore.) The left column of the diagram shows the groups O(n) 

for � = 1,… , 4 together with the derived groups SO(n) and Spin(n).  

Unitary Groups U(n). The unitary group U(n) consists of all the linear transformations that preserve the 

Hermitian inner product of two complex �-dimensional vectors. Topologically, U(n) is connected. U(n) is 

not a simple group (for � > 1), but by restricting the transformations to only those with unit 

determinant, we are led to the subgroup SU(n), which is a simple group. Essentially, to get from U(n) to 
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SU(n) we “divided out” the subgroup U(1). We can thus write U(n) as the “product” SU(n) times U(1) 

(more specifically, U(n) = (SU(n)/��) × U(1) [GTNut, p. 253]). Topologically, SU(n) is simply connected and 

thus no further polishing is necessary. (Incidentally, U(1) is not simply connected.) The middle column of 

the diagram shows the groups U(n) for � 	 1, 2, 3 together with the derived groups SU(n). 

Symplectic Groups Sp(n). The compact symplectic group Sp(n) consists of all the linear transformations 

that preserve the inner product of two quaternionic �-dimensional vectors. Sp(n) is a simple group (no 

nontrivial normal subgroups) and it is simply connected (loops can be continuously contracted to a 

point). These groups are beautiful gems straight out of the box! The right column of the diagram shows 

the groups Sp(n) for � 	 1, 2. (Caution! Different authors use different naming conventions: what we 

call Sp(n) is sometimes called Sp(2n) or USp(2n).) 

Relationships. Interesting relationships between the groups shown in the diagram exist: 

• Groups SO(2) and U(1) are isomorphic. Both groups describe 2-dimensional rotations. 

• Groups Spin(3), SU(2), and Sp(1) are isomorphic. All three groups describe 3-dimensional 

rotations of spinorial objects. The Dynkin diagram for all three groups (or rather their algebras) 

is a small circle. (Dynkin diagrams are composed of one small circle per simple root vector [the 

number of circles equals the rank of the algebra], the lines in between the circles indicate the 

angle between the root vectors [no line for 90°], and the color of the circles [black or white] 

indicates the length of the root vectors [GTNut, Ch. VI.5].) 

• Group Spin(4) has two identical normal subgroups and can be written as the direct product 

Spin(4) = SU(2) × SU(2). This relationship has implications for the existence of two types of 

spinors in our 4D space-time. The Dynkin diagram of Spin(4) (or rather its algebra: spin(4) = 

so(4)) consists of two disconnected circles, symbolizing the two identical subgroups. 

• Groups Spin(5) and Sp(2) are isomorphic (not shown in the diagram). [I don’t know if this 

relationship plays a role in physics.] 

All the groups shown in the diagram are topologically compact, which means that their volume is finite, 

that is, they don’t go off to infinity [RtR, Ch. 12.6]. What about non-compact groups? For example, the 

Lorentz group O(1,3), describing rotations and relativistic boosts, is an important non-compact group. 

While O(4) preserves the Euclidean distance � given by �� 	 ��
� + ��

� + ��
� + ��

�, O(1,3) preserves the 

“space-time distance”   (called proper time) given by  � 	 ��
� − ��

� − ��
� − ��

�. These differences in 

signs (or difference in signature) make the group non-compact. Nevertheless, O(4) and O(1,3) can be 

understood as two different real forms of O(4,�), the complexification of O(4) [RtR, Ch. 13.8]. Another 

important non-compact group is the group of (1-dimensional) translations, �. This group is the universal 

cover of U(1) and SO(2). In a way, the translation group is an unwound (and thus simply connected) 

version of the rotation group.  

All the groups shown in the diagram are continuous, that is, they are Lie groups. What about discrete 

groups with a finite number of elements? For example, the group of symmetries of the equilateral 

triangle, !�, has six elements and the group of symmetries of the square, !", has eight elements. In 

general, the dihedral group, !�, which describes the symmetries of a regular polygon with � vertices, 

has 2� elements. If we let � → ∞, then !� → O(2), the group of symmetries of a circle! The cyclic group, 

��, has � elements and describes the non-reflective symmetries of a regular polygon with � vertices. If 

we let � → ∞, then �� → SO(2), the group of non-reflective symmetries of a circle!  


